

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
membranexus@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series
of actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within
the community.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by [Mozilla’s code of conduct
enforcement ladder](https://github.com/mozilla/diversity).

[homepage]: https://www.contributor-covenant.org

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 ## Contributing
Any and all contributions are greatly appreciated. If you want to see this project grow as much as I do, there are several ways to help. Firstly, if you see something you think you can improve within the code, please fork the repository and make a pull request once you have made any changes you’d like to see. If you just have an idea, or spot a bug, that’s great too! In this case, please file an issue with a corresponding bug or enhancement tag. Oh, and if you like what you see here, please feel free to leave a star on the project, it would mean a ton to me.

 ![Membrane](./Assets/Membrane-banner.svg)
<p align=”center”>

</br>

</br>
Robust, minimal-server-interaction peer routing in the browser
</br>
Note: much of this repo is production materials. If you’re looking for the actual library source, you can find it here.
TODO: Update this garbage readme
</p>

What is this?
The Membrane protocol takes signalling to the browser, creating living peer networks. With minimal server-based bootstrapping, it can create self-sufficient WebRTC peer networks with full self-signaling abilities. The network acts as a giant signaling membrane, connecting even the most distant peers quickly, without the need for a server. So long as a node remains a part of the network, it has full contact with every participant. Meanwhile, the network actively stabilizes, minimizing heuristics like minimum node distance to ensure a healthy, well-connected network and giving a seamless “immediate-access-to-anyone” experience.

[Membranexus.com](https://membranexus.com), built using Membrane. After each node’s first connection, it never again needs the server to help it connect to other nodes or communicate network information. Its peers do both instead.

Membrane leverages the RTCPeerConnection API’s agnosticism about signalling. You could just as well communicate ICE connectivity data through smoke signals or quantum teleportation as through the standard signalling server. In fact, in many cases, signaling servers prove a terribly unreliable, vulnerable approach approach. And so, Membrane attempts to implement a better, alternative protocol. With each membrane acting as a giant, decentralized routeter, distant, unconnected members can exchange arbitrary data in milliseconds with no clumsy intermediary server or risk of downtime.

However, this approach is not perfect. The benefits of decentralization are ultimately also the project’s fatal flaw. No centralized ledger to authenticate peers means spoofing, posing, and general manipulation are simple.

In brief, this tool is robustly functional at enabling anonymous, homogeneous, untrusted data exchange, but poor for situations where peer identity is critical.

Installation and Integation
Installing the Demo or Building From Source

Prerequisites
- npm
- npx
- node.js

###
Paste the following commands into a terminal to build a complete directory structure and initialize the demo on 127.0.0.1:8000 anywhere with the prerequisities installed.

`shell
curl -LJo Membrane-current.tar.gz https://github.com/Elijah-Bodden/Membrane/tarball/v1.0.5
tar xfv Membrane-current.tar.gz --transform 's!^[^/]\+\($\|/\)!Membrane-current\1!'
cd Membrane-current/src/source/frontend
npm install
cd ../server
npm install
npm run deploy
rm ../../../../Membrane-current.tar.gz
`
To kill the pm2 daemon created by npm run deploy, run npm run kill.

However, although this demo functions, this does not mean it should be used in production. It is a quick-and-dirty demonstration of the library’s abilities, not made for any serious scalable production situation. quoting ./src/source/frontend’s “PLEASENOTE.md”,
>Excluding the included lib code, the vast majority of the code within this directory and its descendants should never see the light of serious production. It was hastily coded to fit its closed use case. This is nothing more than a demo of the library—far out-of-scope of this project’s goal. Please do not treat it as a true part of Membrane. The project begins and ends at lib.

TL;DR: This code is a great risk to the performance and stability of your frontend. Unlike lib, it was not intended as a viable product, and shouldn’t be used like one.
Deploying a New Signalling Server
Installing the pre-made server from /src/source/server/index.noStatic.js is a piece of cake! Simply enter the following into a terminal while in the root of your node project, sit back, and relax while the project installs.
`bash
npm i membrane-server
`
Then, to deploy the server over pm2 onto websocket port 8777, enter npm explore membrane-server – npm run deploy. Simmilarly, to kill the instance created by this command, run npm explore membrane-server – npm run kill. Now just remember to replace the signalling addresses in your lib script’s config with your new server’s, and you’re ready to go.
Custom Applications
Using the vanilla lib module in a custom use-case is relatively simple. Here is an overview of the typical integration process. First, find the delivery method you like below, then, after you’ve completed its unique instructions, head down below to the general next steps
| Delivery Vector | Instructions |
—- | —-
npm + Webpack	Run npm install @elijah-bodden/membrane	cd node-modules/elijah-bodden/membrane in the root of your webpack project^{[[1]](#f1)}
HTML script tag	Enter your project’s static file directory, find where you’d like to store the script, then run wget https://raw.githubusercontent.com/Elijah-Bodden/Membrane/main/lib/index.js -o membrane.min.js. Then insert within your HTML head the following tag: <script src=”/path/to/membrane.min.js”/>. From here, return to the folder where you installed the script and follow the instructions found after this table	
Jsdelivr CDN (not recommended)	With this method, you will not need to follow the general instruction which come after the table; however, you will be stuck with the default config and every peer request will be accepted by default. If you wish to proceed, knowing this, simply prepend the following tag to your HTML head’s contents. <script src=”https://cdn.jsdelivr.net/npm/@elijah-bodden/membrane/index.min.js”	

<p align=center><i>then</i></p>

	(optionally) Modify your script’s CONFIG.communication.configLoaderFunction as needed in [this](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#loading-custom-configurations) form.

2. (optionally) Create a CONFIG.communication.routeAcceptHeuristic either statically in defaultConfig or dynamically at runtime through CONFIG.constants.configLoadFunction. If you want to allow the user to explicitly accept certain routes, you can include an awaited async function which fetches user responses.
<!–List Break–>
At this stage, the script should be capable of standalone function. To verify, serve several instances of it into any relatively-recent window-based environment (i.e. a browser) with the [default server](https://github.com/Elijah-Bodden/Membrane#deploying-a-new-signalling-server). If an instance’s livePeers variable contains at least one Object, everything’s working.
Then, to interact with the modlue:
- Use negotiateAgnosticAuthRoute on members of Object.keys(networkMap.nodes) to authenticate arbitrary nodes.
- Use * Authenticated Peer *.standardSend(“consumable”, *arbitrary data*) to send consumable data to authenticated peers.
- Define an output for consumable data with onConsumableAuth((_dontUse, data) => {* useData *(data)}).
- Provide initial connect and reconnect websocket urls in CONFIG.serverLink.
- Set up a signaling server with the appropriate endpoints and exchange methods (or use the [included](https://github.com/Elijah-Bodden/Membrane#deploying-a-new-signalling-server) one)
###

<b id=”f1”>1 The following items are able to be imported from the npm module: CONFIG, GossipTransport, authPeers, deauthPeer, defaultConfig, detatchedRoute, eventHandler, eventHandlingMechanism, gossipTransport, hiddenAliasLookup, init, initialReferenceLedger, livePeers, loadConfig, mostRecentServerHeartbeat, networkMap, networkMap, onAuthRejected, onLivePeersUpdated, onPublicError, peerConnection, pubAliasLookup, pubAliasUnparser, routingTableTransport, serverHardRestart, and topologyTransport. [↩](#a1)
Contributing
Any and all contributions are greatly appreciated. If you want to see this project grow like I do, there are several ways to help. Firstly, if you see something you think you can improve in the code, please fork the repository and make a pull request once you have made any changes you’d like to see. If you just have an idea, or spot a bug, that’s great too! In this case, please file an issue with a corresponding bug or enhancement tag. Oh, and if you like what you see here, please feel free to leave a star on the project, it would mean a ton to me.
Authors
* Elijah Bodden - Initial work - [Elijah-Bodden](https://github.com/Elijah-Bodden)
License
This project is licensed under the MIT License. See the LICENSE file for details.

Built With
- The core module - 100% [Vanilla.js](http://vanilla-js.com/). Additionally, check out [kNow](https://github.com/Elijah-Bodden/kNow), which I spun off of the homebrew event handler made for use in Membrane.
- Frontend - Standard HTML/SCSS/JS, plus [Sigma.js](https://github.com/jacomyal/sigma.js)+[Graphology](https://github.com/graphology/graphology) to power the gorgeous network visualization graph (and a pinch of Font Awesome for icons)
- Backend - JS on [node](https://github.com/nodejs/node) using, most notably, [Winston Logger](https://github.com/winstonjs/winston) for logging and [WS](https://github.com/websockets/ws) as a WebSocket server

Contact
Elijah Bodden - elijahbodden@protonmail.com / admin@membranexus.com
Project - https://github.com/Elijah-Bodden/Membrane

 # Documentation
Feel free to use this official documentation as much or as little as you like as you build the applications of the future, with a little help from Membrane.
- ### Aliases

Aliases are the fundamental property of Membrane peers. They define unique peer identities, and come in two flavors: hidden and public.
- hiddenAliases are used heavily in internal transactions and routing, acting as formal universally-unique-identifiers for peers.
- Meanwhile publicAliases act as a user-definable skin which translates directly into hidden aliases, and vice-versa, allowing for some ammount of identity-customization.

###
These two are correlated by the object hiddenAliasLookup, for finding a hiddenAlias’s publicAlias, while publicAliasLookup does the opposite.
- ### Config

	#### Loading custom configurations:
Global preferences are loaded into the CONFIG object when the script is first initialized. The pre-filled contents of defaultConfig act as base, with its constants.configLoadFunction property dynamically providing values to substitute. These substitutions are formatted as follows:
```
{


rootType.subtype.(…).preferenceName : value
…




For a full list of paths which can be overwritten, refer to the [defaultConfig](https://github.com/Elijah-Bodden/Membrane/blob/main/lib/index.js) object itself—it contains a preset for every possible CONFIG value.
The configLoadFunction function runs every time the script is initialized. If the function is left undefined, or if it returns an empty object, CONFIG will be set equal to defaultConfig. If a provided path doesn’t exist in defaultConfig, its value is discarded.



	#### communication.packageArgs
An array of which arguments which must/may be included in packages sent via [RTCDataChannel.prototype.standardSend](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#rtcdatachannelprototypestandardsend). This value helps determine the validity of recieved data packages. Entries are structured as { required : […], optional: […] }.








	> _NOTE:_ Optional is left open-ended by default. This means that all extranneous values in a recieved package will be allowed. To forcibly allow only arguments specified in packageArgs, so that anything else throws an error, include the value “!*” in optional.
	
	#### communication.routeAcceptHeuristic
Given a single argument—a request initiator package minus the type header—determines whether or not to connect to a peer. If this function is async, it will be automatically `await`ed, allowing asyncronous user interaction. Returns a boolean value, representing whether or not a route should be established.









	
	### Prototype overrides
	This script extends two built-in prototypes, in both cases to add a specific formatting micro-protocol, and both times using unusual, unambiguous names to prevent potential future conflicts.<br><br>
> _NOTE:_ server reactions are specific to the signaling server used. Here it is assumed you are using the one from /src/server, but you can employ any custom implementation you want.
- #### WebSocket.prototype.crudeSend


Accepts a mandatory first argument, type, and an optional second, typeArgs—an object containing data relevant to the specific type. This data is then bundled appropriately and sent to the server. The function allows for the following types:
- heartbeat - Sends an empty message to indicate a peer is still living for a non-native ping-pong implementation.
- reportNode - Alerts the server that a particular peer provided invalid SDP to a node newly requesting entry. The server will increase the offender’s routing weight (making it less probable it will route to it again), and provide a new route to the caller. If the node receives invalid data from different nodes three times in a row, it will throw a fatal error and stop attempting.
- returnSDP - Returns SDP made in response to a request from the server (this will be provided, in turn, to a node newly entering the network, one half of the initial server signal).
- ignoreSDPRequest - Like reportNode but for a node helping a prospective new peer; if the seed SDP provided by said new node is invalid, this type will be used. The server will modestly penalize the node reporting the error, and send an [“ERROR”] package to the initial requester.





	#### RTCDatachannel.prototype.standardSend
Like crudeSend, this function takes either one or two arguments. However, here no checks are performed to make sure a package is properly formatted, and thus it must contain the correct data from the beginning. For a full list of possible inputs, see [CONFIG.communication.packageArgs](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#communicationpackageargs). In the end, all data are bundled up and sent to the rtcDataChannel which the method is called on.










	### EventHandlingMechanism
This class is available globally under the variable name eventHandler; for more information, check out the official [kNow](https://github.com/Elijah-Bodden/kNow) repo, which was spun off of the Membrane event handler.


	### AbstractMap
AbstractMap is an efficient adjacency-list-based representation vector for (optionally-weighted) undirected graphs. Alongside self-explanatory methods for node and edge modification, Dijkstra’s pathfinding algorithm can be invoked for a given node through precomputeRoutes, and then further extracted to link identification through findNextHop. exportList and importList allow compact importing and exporting of raw graph data. The property exportRefreshed conveys whether the current value of export accurately represents the map. The optionalExport method will exportList if and only if exportRefreshed is false. The class is instantiated globally as networkMap, which is used to find the most efficient routes for peer communication. Taking Object.keys(networkMap.nodes) or Object.keys(networkMap.adjacencyList) provides a list of all nodes currently on the nework.


	### PeerConnection
The peerConnection class acts as a high-level wrapper for the RTCDataChannel and RTCPeerConnection APIs, facilitating abstract interactions, such as routing and “[authenication](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#authentication)”, between nodes. Every connection made within a Membrane is represented as an instance of this wrapper.
#### SDP Exchange
- #### PeerConnection.prototype.makeOffer


Must never be called on channels which have already begun ICE exchange; syncronously aggregates createOffer ICE candidates, eventually providing a single complied SDP package ready for exchange.





	#### PeerConnection.prototype.receiveOffer
Accepts a package of SDP generated by another peer’s makeOffer and commits it to the peerConnection, simmilarly aggregating the candidates generated by RTCPeerConnection’s createAnswer, and returning the composite answer.


	#### PeerConnection.prototype.receiveAnswer
Accepts the answer generated by peerConnection.prototype.receiveOffer and commits it to the peerConnection, completing the SDP cycle and readying the connections for data exchange.
____


	#### makeDefiniteRoute
Accepts the hiddenAlias of an existing node and a level of desiredPermissions. Instantiates a new peerConnection, generates an offer through makeOffer, bundles this up into an appropriate package, and sends it via [detatchedRoute](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#detatchedroute) to the nearest link in the route to destination. The function then awaits one of three outcomes—routeAccepted, routeRejected, or routeInaccessible, and responds accordingly, either preparing the channel for data transfer or killing it and alerting the user.


	#### comprehendProspectiveRoute
Accepts a another peer’s route offer package, instantiates a new peer, and, assuming the routePackage’s SDP validates, calls [CONFIG.communication.routeAcceptHeuristic](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#communicationrouteacceptheuristic) on the offer to determine whether or not to persist the connection and formulate a response or to terminate the initialization and destroy the peer.


	#### handleMessage
The drain through which all recieved packages are aggregated; the code is quite straightforward, but would be downright ridiculous to display here given its length and repetitiveness. For a precise overview of the ways messages are handled, see the [handleMessage source](https://github.com/Elijah-Bodden/Membrane/blob/main/lib/index.js#L872).


	#### weaklyValidateMessage
Validates a message per the argument requirements found in [CONFIG.communication.packageArgs](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#communicationpackageargs).


	#### initializationMethods
Contains the two neccessary functions of a proper symmetric peer handshake, namely:
- invokerIntroduction - Used on packages of the type invokerIntroduction, which are provided by the voluntary peer (the one which initially “requested” the route); this method applies the data proivded by the first peer, and eventually bundles up its own reciprocalAlignment package for this peer, plus a copy of the current networkMap, if the peer claims to need one.
- reciprocalAlignment - Used simmilarly; accepts and parses the aliases (and possibly networkmap) provided by its peer, eventually adding it to livePeers and completing the exchange sequence.


	#### close
Forcefully closes a peer, removing it from registers, such as livePeers and publicAliasLookup, and alerting the network of the death through the [GossipTransport](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#gossiptransports).


	#### stabilizeLink
Called while a given node has less than two live peers. The peer vigorously searches for a stable peer to connect to, preferably one as distant from it as possible, in order to reinforce the network. The sequence will halt only when no feasible, unconnected peers remain, or else the peer successfully adds another connection.






	### Floundering
If a peer ever becomes fully disconnected from the network, it will violently flounder, wiping its networkMap and performing a serverHardRestart, thus flailing around aimlessly until the server finally reenters it into the network.


	### GossipTransports
The GossipTransport keeps all (contiguous) nodes syncronized and prevents total descent of the network into chaos. Gossip pulses across, the network, alerting peers to every reconfiguration. gossipTransport (the global instance of GossipTransport) handles two kinds of change: networkMap weight (calculated off of the routing penalties within CONFIG.constants.violationWeightPenalties and assigned through shiftNodeWeight), and topological reconfiguration, i.e. node or edge addition or deletion. The Gossip flow is regulated by the instance’s propagationPulse. The function called over this interval determines exactly which kinds of gossip to commit every round. It decides this by looking at each defined type’s iterModulo; if this.pulseIterations (which is incremented each pulse) % iterModulo === zero, that type’s name will be pushed to the propagationStack. From here, buffered items of gossip are collected into per-type bundles and distributed via [propagateAll](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#propagateall).
- #### Types


Every gossip transport has zero or more types registered through the addType method. Types allow seggregated ledgers which store gossip intended for different purposes, allowing fine-grained control over distribution. In Membrane, two types are registered to gossipTransport: topology and weight. The former has no specified iterModulo, defaulting to dispatching every propagation pulse. In the second, the value is set to 100, so that propagates once every hundred runs, or every ten seconds. Assuming a type is added successfully, addType will return a set of “trigger functions”—an object with two properties addGossip, and remove. addGossip accepts exactly one argument, the piece of data to propagate, which will be pushed to that type’s buffer and eventually dispatched. True to its name, remove immediately and irreversably destroys the the type and all associated values.





	#### Parsers
Parsers form a complement to types. As such, they are absolutely useless unless at least one member of the network has registered and actively dispatches the corresponding type. Parsers are called over gossip both on directly adding it through addGossip and on recieving it through consumeGossip. If no parser has been defined for a recieved type, a default parser is used. This parser allows the gossip to continue propagation, but  the data has no direct interface with the node. The addParser function is relatively extensible, allowing fine-grained on-the-fly registry; however, because of this, it is also unusually convoluted. While it technically only requires the type argument, the type of gossip to respond to, a parser registered like this is absolutely inert, less useful than even default. The following parameters may be added to make the parser more valuable:
- useDefault - If truthy, the parser will first apply the default parser to the data before before passing it to the optional parserCallback, if one exists.
- parserCallback If defined recieves the entire block, plus, If useDefault is set to true, two other items, unknown and committable. unknown contains complete copies of every block component with data not found in “knownFacts”, while commitable is a further copy of unknown with all non-constantArgs stripped out of each component.
- constantArgs - This optional array value specifies which pieces of data are relevant to the facts conveyed, so that the parser can decide whether or not it already “knows” a particular fact, and therefore shouldn’t gossip about it (helpful for packages containing nonessential metadata which we would like to ignore). If ommitted, this value defaults to the Object.keys of the first member of the block.
- preliminaryVerification - Only used if useDefault is set to true, this argument acts as a discriminator function, run over every member of block. If a given item recieves false, it is withheld from the buffer and forgotten.


	#### propagateAll
The propagateAll function propagates every item of a specific type of gossip simultaneously, bundling them all up into contiguous packages. If the total size of the type’s composite block exceeds 16 KiB, it will be split into several, equally-sized packages to preserve transfer speed (this slowdown seems particularly acute with SpiderMonkey engine). After having distributed the complete block to each live peer, the type’s buffer will be wiped completely clean.






	### detatchedRoute
This function attempts to findNextHop to the provided destination parameter. Assuming a route exists between the initiator and the destination, a package will be “standardSent” to the computed nearest intermediary using the rest of the parameters.


	### makeServerLink
This function is required to initialize network activities. Effectively, it instantiates a new, unbound peer and immediately calls makeOffer on it, eventually bundling the product of this function into a stringified, Base-64-ed version and inserting it into CONFIG.serverLink.initBindURL at the position of the (required) asterisk. By design, this should be inserted as a query parameter. The server will then forward this to the lowest-weighted peer connected to it, which will in turn ingest the data via receiveOffer and return it through crudeSend, to finally be consumed by the initial peer, as per the standard signaling protocol. This method additionally defines exactly how these “helper” peers are to act and how to perform server reconnects, which allow nodes to reconnect to the server and begin acting as helpers immediately after they regain connectivity to it, without needing perform a full signaled initial connect. This function ultimately returns the serverHardRestart function, which allows us to fully re-initialize.


	### init
In order to begin network interaction, the init function must be called. Its purpose is multi-fold, distilled by the following sequence. I pay particular attention to these elementary actions as this is the only function which __must__ be run top-level. After this, the network becomes self-sustaining.
1. Config is loaded
2. serverLink is generated through makeServerLink
3. gossipTransport is instantiated and given the the types “topology” and “weight”
4. A parser is added for topology. It is only able to track link, as opposed to node events; however, because these events imply the nodular structure so heavily, they infer both from these.
5. A simple parser is added for weight. Alongside the standard alias and weightModification, each item must also include an occurenceID in order to differentiate between unique adjustments of the same kind, on the same node.
<!– List terminator –>
After this sequence has successfully completed, the network will act with complete autonomy in stabilizing and routing, so that only explicit actions, such as negotiateAgnosticAuthConnection need to be taken.


	### Status trackers
This project tracks connection status centrally in two ways—livePeers and authPeers. Each is modified through the appropriate add or remove method (i.e. addAuthPeer and removeAuthPeer), and may be watched for changes with a callback via an onXUpdated method (i.e onAuthPeersUpdated). Livepeers comprises a list of all directly-connected peers, with new peers automatically appended following successful initialization exchanges, and peers on death or explicit termination. AuthPeers is a softer abstraction on this, containing the hiddenAliases, rather than actual references, of all peers which have [advanced](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#authentication) send permissions.


	### Authentication
Authentication is essential to the this project’s function. Within the scope of peerConnections, the term is taken in a slightly different sense from the standard cybersecurity definition. Here, if a peer is authenticated to another, this means it will readily accept consumable data—data intended solely for user-consumption and never used internally—from it.
Within Membrane networks, peers do not connect solely for the purpose of explicit data exchange; the network constantly [stabilizes](https://github.com/Elijah-Bodden/Membrane/blob/main/docs.md#stabilizelink) by creating redundant routes between nodes to improve fault tolerance. Therefore, authentication is a necessary formalism to show that, not only are two nodes implicitly connected, but, too, they both agree to exchange consumable data. There are three main ways to establish an authenticated route: peerConnection.prototype.makeDefiniteRoute with “permissions” set to “advanced,” (instance of peerConnection).requestPermissionEscalation, again passing the value “advanced,” or the more dynamic hybrid of the two–peerConnection.prototype.negotiateAgnosticConnection, which will perform an escalation if a route already exists to the destination, and, if not, employ the makeDefiniteRoute method.






            

          

      

      

    

  

    
      
          
            
  —
name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

—

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:
1. Go to ‘…’
2. Click on ‘….’
3. Scroll down to ‘….’
4. See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.


	Desktop (please complete the following information):
	
	OS: [e.g. iOS]


	Browser [e.g. chrome, safari]


	Version [e.g. 22]






	Smartphone (please complete the following information):
	
	Device: [e.g. iPhone6]


	OS: [e.g. iOS8.1]


	Browser [e.g. stock browser, safari]


	Version [e.g. 22]








Additional context
Add any other context about the problem here.



            

          

      

      

    

  

    
      
          
            
  —
name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

—

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.



            

          

      

      

    

  

    
      
          
            
  Excluding the included modified lib code, the vast majority of that found within this directory and its descendants should never see the light of day in any serious production environment. It was hastily, and, at that, slopily coded to fit the specific closed use case for which it was designed. This is nothing more than a demo of the library—far out-of-scope of this project’s goal, and therefore given much less care and attention than the actual objective.
TL;DR: use this code at a great risk to the performance and stability of your frontend. Unlike lib, it was not intended to be an actual viable product, and should not be treated as such.



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





